SOLUTIONS TO PROBLEMS

10.1 (i) Disagree. Most time series processes are correlated over time, and many of them
strongly correlated. This means they cannot be independent across observations, which simply
represent different time periods. Even series that do appear to be roughly uncorrelated — such as
stock returns — do not appear to be independently distributed, as you will see in Chapter 12 under
dynamic forms of heteroskedasticity.

(i1) Agree. This follows immediately from Theorem 10.1. In particular, we do not need the
homoskedasticity and no serial correlation assumptions.

(ii1) Disagree. Trending variables are used all the time as dependent variables in a regression
model. We do need to be careful in interpreting the results because we may simply find a
spurious association between y, and trending explanatory variables. Including a trend in the
regression is a good idea with trending dependent or independent variables. As discussed in
Section 10.5, the usual R-squared can be misleading when the dependent variable is trending.

(iv) Agree. With annual data, each time period represents a year and is not associated with
any season.

10.2 We follow the hint and write
gGDP., = ay+ &intey + Sintr + uyy,
and plug this into the right-hand-side of the int, equation:

nt;, = n+ ]/1(610 + Spinty + Ojintio + upy — 3) + v
= (w+noo—3n)+ noint. + poiinta + i + e

Now by assumption, u,; has zero mean and is uncorrelated with all right-hand-side variables in
the previous equation, except itself of course. So

Cov(int,u.1) = B(int, u.1) = pE(u.,)>0

because 5 > 0. If 0'5 =E( uf) for all ¢ then Cov(int,u.1) = n af . This violates the strict

exogeneity assumption, TS.2. While u, is uncorrelated with int,, int.,, and so on, u, is correlated
with int,+1.

10.3 Write
y* = ao"‘(éb‘i‘ 51 + 52)2* = O(0+LRP'Z*,

and take the change: Ay* = LRP-Az*.
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SOLUTIONS TO PROBLEMS

11.1 Because of covariance stationarity, » = Var(x,) does not depend on ¢, so sd(x.+x) = \/y, for

any h > 0. By definition, Corr(x,x+4) = Cov(x,xs+4)/[sd(x7) - sd(xe4)] = 7, /(\/Z . \/Z ) =717,

11.2 (i) E(x;) = E(e;) — (1/2)E(er.1) + (1/2)E(er2) =0 for 1 = 1,2, ... Also, because the e, are
independent, they are uncorrelated and so Var(x,) = Var(e,) + (1/4)Var(e.;) + (1/4)Var(e.n) = 1 +
(1/4) + (1/4) = 3/2 because Var (e) =1 for all 7.

(i1) Because x; has zero mean, Cov(x;,x.1) = E(xxi11) = E[(e; — (1/2)er.1 + (1/2)e2) (€1 —
(172)e; + (1/2)e1)] = E(eerr1) — (112)E(e’) + (1/2)E(eer1) — (1/2)E(er1emr) + (1/4(E(er1e)) —
(1/4)E(e,) + (172)E(erzer) — (1/4)E(erzer) +(1/4)E(erzerr) = — (122)E(e) ) — (1/4)E( ¢/, ) =
—(1/2) — (1/4) = -3/4; the third to last equality follows because the ¢, are pairwise uncorrelated
and E(¢e’) = 1 for all #. Using Problem 11.1 and the variance calculation from part (i),

Corr(xpx 1) =— (3/4)/(3/2) =-1/2.
Computing Cov(x,x;+2) is even easier, because only one of the nine terms has expectation not
equal to zero: (1/2)E( e,2 ) = %. Therefore, Corr(x,x.2) = (1/2)/(3/2) = 1/3.

(111) Corr(x,,x;+4) = 0 for 7 >2 because for & > 2, x;1; depends at most on e, for j > 0, while x;
depends on e}, j < 0.

(iv) Yes, because terms more than two periods apart are actually uncorrelated, and so it is
obvious that Corr(x,x,;) — 0 as h — oo.

11.3 (i) E(vy) = E(z + ¢;) = E(2) + E(e)) = 0. Var(y,) = Var(z + ¢,) = Var(z) + Var(e,) +
2Cov(z,e) = 0. + 0. +2-0= o + o_. Neither of these depends on .

(i) We assume / > 0; when 4 = 0 we obtain Var(y;). Then Cov(y,yi+n) = EQvpyrn) = E[(z +
ezt emn)] = E(zz) + E(ze+) + E(ez) + E(eersn) = E(zz) = 0'22 because {e;} is an uncorrelated

sequence (it is an independent sequence and z is uncorrelated with e, for all z. From part (i) we
know that E(y;) and Var(y,) do not depend on ¢ and we have shown that Cov(y;,):+,) depends on
neither ¢ nor 4. Therefore, {y,} is covariance stationary.

(iii) From Problem 11.1 and parts (i) and (ii), Cort(v,y.1) = Cov(ynyen)/Var(y) = o- /(o> +

c2)>0.

(iv) No. In fact, the correlation between y, and y;,, is the same positive value obtained in part
(iii) for any 4 > 0. In other words, no matter how far apart y, and y,+, are, their correlation is
always the same. Of course this is due to the presence of the time-constant variable, z.
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11.4 Assuming y, = 0 is a special case of assuming y, nonrandom, and so we can obtain the
variances from (11.21): Var(y,) = o, t and Var(y.;) = o, (¢t + h), h > 0. Because E(y,) = 0 for all
t (since E(yg) = 0), Cov(ys,yi+n) = E(yps+s) and, for 2> 0,

E(ytqu) = E[(ez tet ... e])(€t+h temp T ...+ el)]

E(e})+E(e’ )+ ... +E(e})= ot

where we have used the fact that {e;} is a pairwise uncorrelated sequence. Therefore,
Cort(yiyirn) = Cov(yiyren)/ \/Var( v,)-Var(y,,) =t/ \/t(t +h) = \/t (t+h.

11.5 (i) The following graph gives the estimated lag distribution:
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By some margin, the largest effect is at the ninth lag, which says that a temporary increase in
wage inflation has its largest effect on price inflation nine months later. The smallest effect is at
the twelfth lag, which hopefully indicates (but does not guarantee) that we have accounted for
enough lags of gwage in the FLD model.

(i1) Lags two, three, and twelve have ¢ statistics less than two. The other lags are statistically

significant at the 5% level against a two-sided alternative. (Assuming either that the CLM
assumptions hold for exact tests or Assumptions TS.1’ through TS.5" hold for asymptotic tests.)
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(iii) The estimated LRP is just the sum of the lag coefficients from zero through twelve:
1.172. While this is greater than one, it is not much greater, and the difference could certainly be
due to sampling error.

(iv) The model underlying and the estimated equation can be written with intercept oy and
lag coefficients 0, o1, ..., d12. Denote the LRP by &= & + & + ... + d12. Now, we can write

=6 -0 —0—...— on Ifweplug this into the FDL model we obtain (with y, = gprice, and
z,= gwage;)
Vi = @t (-0 &h—...=0)z+ 0zt Szt ...+ Onzia t U

oy + Gz + 51(Zt-1 _Zt) + 52(Zt-2 —Zz) + ...+ 512(21-12 - Zt) +u,.

Therefore, we regress y, on z,, (z.1 — z), (ze2 — 21), ..., (212 — z;) and obtain the coefficient and
standard error on z; as the estimated LRP and its standard error.

(v) We would add lags 13 through 18 of gwage, to the equation, which leaves 273 — 6 =267
observations. Now, we are estimating 20 parameters, so the df in the unrestricted model is df,, =

267. Let R be the R-squared from this regression. To obtain the restricted R-squared, R’ , we
need to reestimate the model reported in the problem but with the same 267 observations used to
estimate the unrestricted model. Then F=[( R, —R’)/(1 — R’)](247/6). We would find the

critical value from the Fj, 47 distribution.

[Instructor’s Note: As a computer exercise, you might have the students test whether all 13 lag
coefficients in the population model are equal. The restricted regression is gprice on (gwage +
gwage.| + gwage, + ... gwage.12), and the R-squared form of the F test, with 12 and 259 df, can
be used.]

11.6 (i) The ¢ statistic for Hp: i = 11is ¢ =(1.104 — 1)/.039 = 2.67. Although we must rely on
asymptotic results, we might as well use df' = 120 in Table G.2. So the 1% critical value against
a two-sided alternative is about 2.62, and so we reject Hy: £ = 1 against H;: £ # 1 at the 1%
level. It is hard to know whether the estimate is practically different from one without
comparing investment strategies based on the theory (£ = 1) and the estimate (,31 =1.104). But

the estimate is 10% higher than the theoretical value.

(i1) The ¢ statistic for the null in part (i) is now (1.053 — 1)/.039 = 1.36, so Hp: i =1 is no
longer rejected against a two-sided alternative unless we are using more than a 10% significance
level. But the lagged spread is very significant (contrary to what the expectations hypothesis
predicts): £ = .480/.109 = 4.40. Based on the estimated equation, when the lagged spread is
positive, the predicted holding yield on six-month T-bills is above the yield on three-month T-
bills (even if we impose ; = 1), and so we should invest in six-month T-bills.

(ii1) This suggests unit root behavior for {Ay3,}, which generally invalidates the usual ¢-
testing procedure.
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